ﬁE&H&/

dependable evolvable pervasive software engineering group

Complex Event Processing @ PoliMI

Gianpaolo Cugola
DEIB - Politecnico di Milano
gianpaolo.cugola@polimi.it

dependable evolvable pervasive software engineering

On-line processing of (big) data:
Two approaches

[Traditional}

DBMS
(" (big-data)) _—
ﬂ Distributed SN

processing

. Syst

[Active J _ platforms / ystems
DBMS ﬂ

ﬂ Distributed
Streaming CEP
DSMS Platforms

dﬂ'ﬂﬂ%&/ GAUSS Kick-Off Meeting - Milan - Feb 2017 2

dependable evolvable pervasive software engineering
*—o—o

From DBMS to DSMS and Streaming Platforms

The Distributed
The DBMS way The DSMS way Streaming way

T 8

1 VAR

B 0 o
1 1
@ ©
Y ¢

l !

dﬁﬁﬂ%ﬁ/ GAUSS Kick-Off Meeting - Milan - Feb 2017 3

dependable evolvable pervasive software engineering

Data Stream Management Systems

The continuous nature of streams requires a paradigmatic change:

— from persistent data stored and queried on demand
* One-time semantics

— to transient data consumed on the fly by continuous queries
* Continuous semantics

Continuous queries

!

OooO0OEO0EOO0O00OO0E0OmE EOONOOC [m]m]
EREOONOORNEOOOOOE0OR EOOEEOCODEE
OEEOOREOOOOOO0O0OE0R EEO0O0O0CO@EON
EONONOERONOOOOOOOR OEEONOCO@EEO
OEEOO0ONOROROOOOOE0OR EORONOCOEON
OEEOONONOROOOOOOEN EORONOCOEON
OoOO0OEORO0O0O000000E . EOROOO0COEOO0
OROO0O0ROO0OROOO0000E N EOO0ONOCEOEON
OEOROORONEOOOOO0DN OEOEEOCEONON
ENOEOROORNEOOOOOODNE 00O ONEE

through windows

\

Registered

CQL/Stream: Conti
Select IStream(*) ontinuous
From Fl[Rows 5],

F2[Rows 10]
Where Fl1.A = F2.A

dﬁ'ﬂ‘ﬂ%ﬁ/ GAUSS Kick-Off Meeting - Milan - Feb 2017 4

dependable evolvable pervasive software engineering

Distributed Stream Processing

Server Logs Flink

§gkofk0 M General Architecture

case class Event(location: Location, numVehicles: Long)

Streaming API val stream: DataStream[Event] = .;

stream
filter { evt => isIntersection(evt.location) }

.keyBy("location")
.timeWindow(Time.minutes(15), Time.minutes(5))
.sum("numVehicles")

.keyBy("location")

.mapWithState { (evt, state: Option[Model]) => {
val model = state.orElse(new Model())
(model.classify(evt), Some(model.update(evt)))

1}
—0—o0—o

d'e‘eﬂ-sg/ GAUSS Kick-Off Meeting - Milan - Feb 2017 5

dependable evolvable pervasive software engineering

Event-based systems

topic=fire* &
place=*

topic=* &
place=1st floor

« Components collaborate by
exchanging information about
occurrent events. In particular: % o

— Components publish notifications
about the events they observe, or

— they subscribe to the events they are
interested to be notified about

« Communication is:

OaA
— O~
fire training at
1st floor

OAaA

OaR
fire training at
1st floor

oo i o
— Purely message based fire training at
— Asynchronous — O~H

: fire alarm at
— Multicast 1st floor
- |mp|IC|t topic=fire alarm &
place=*

— Anonymous

-

fire alarm at
1st floor -

dﬂ'&ﬂ-s.g/ GAUSS Kick-Off Meeting - Milan - Feb 2017 6

dependable evolvable pervasive software engineering

Complex Event Processing (CEP)

« CEP systems adds the ability to deploy rules that describe how
composite events can be generated from primitive (or composite)
ones

 Typical CEP rules search

for sequences of 4
events &
— Raise Cif A—>B
« Time is a key aspect
) Complex Event
in CEP Event o Processing Engine Event(sci%rllssL)Jmers
" lsources)
= | Rules

dﬂ'&ﬂ{g/ GAUSS Kick-Off Meeting - Milan - Feb 2017 7

dependable evolvable pervasive software engineering

Several tools

* Distributed stream computing platforms/frameworks
— STORM: http://storm-project.net/
— SPARK STREAMING: https://spark.apache.org/streaming/
— Apache Samza: http://samza.apache.org/
— Apache Flink: https:/flink.apache.org/
* Open source DSMS/CEP
— Esper: http://www.espertech.com/esper/
— WSO02 Complex Event Processor http://wso2.com/products/complex-event-processor/
— T-Rex (PoliMI)
« Commercial DSMS/CEP

— |IBM InfoSphere Streams, TIBCO StreamBase, Oracle CEP, SAP’s Sybase CEP,
Microsoft StreamInsight

dﬁ‘&ﬂ-sg/ GAUSS Kick-Off Meeting - Milan - Feb 2017 8

dependable evolvable pervasive software engineering

Distributed Stream Processing @ PoliMI

*—0—

Streaming operators are typically stateless

— Such that they can be easily replicated/distributed operating
on different stream partitions

In several applications it is necessary to have stateful
operators...

...and share state among different operators
— Especially true for data mining and machine learning alg.

Goal: Extend existing platforms (namely Apache Flink) to
support such shared state...

* ... with minimal impact on performance

d‘ﬂ'&ﬂ{g/ GAUSS Kick-Off Meeting - Milan - Feb 2017 9

dependable evolvable pervasive software engineering

CEP @ PoliMI: T-Rex

« T-Rex receives primitive events

published by one or more sources ’: CZ:’tZ"e composite
— Embedded sensors, but also
legacy systems... ”"G
* Processes those events i 7 -
— Using a set of rules written in - — e 5
an ad-hoc language: TESLA > ~
— To derive new information as a -

set of composite events —

« Delivers events to interested
components (i.e., subscribers) Sources Subscribers

— E.g., mobile devices, ...

dﬁ‘&ﬂ%ﬁ/ GAUSS Kick-Off Meeting - Milan - Feb 2017 10

dependable evolvable pervasive software engineering

TESLA: The rule language of T-Rex
Define CE (Att; : Type,;, .., Att, : Type,)
From {Pattern}

Where Att, = £, (..), .., Att, = £ (..)
Consuming e, .., €

d‘&'&ﬂ%/ GAUSS Kick-Off Meeting - Milan - Feb 2017 11

dependable evolvable pervasive software engineering

TESLA: An example

Define GrowingDelay(train id: string, newDelay: int, oldDelay: int)
From TrainDelay(train id = $t, delay = $d) as Tl
and last TrainDelay(train id=$t, delay<$d) as T2
within 10m from T1

Where train id := Tl.train id, newDelay:=Tl.delay,
oldDelay:=T2.delay;

Define GrowingDelay(train id: string, newDelay: int, oldDelay: int)
From TrainDelay(train id = $t, delay = $d, delay>10) as Tl
and last TrainDelay(train id=$t, delay<$d) as T2
within 10m from T1
and not TrainDelay (train id=$t, delay>=$d)
between Tl and T2
Where train id := Tl.train id, newDelay:=Tl.delay,
oldDelay:=T2.delay;

d‘&'&ﬂ%/ GAUSS Kick-Off Meeting - Milan - Feb 2017 12

dependable evolvable pervasive software engineering

Thanks f ttention!

Gianpaolo Cugola
DEIB - Politecnico di Milano
gianpaolo.cugola@polimi.it

GAUSS Kick-Off Meeting - Milan - Feb 2017 13

dependable evolvable pervasive software engineering

Patterns in TESLA

CE
. . . o o o >
Selection of a single event B B A (X=15)
— A(x>10) .
— Timer () ‘Sjrmn .
 Selection of sequences 4 CE

— A(x>10) and each B

L J o o >
within 5 min from A l B I[A(X=15)]
- A(x>10) and last B
within 5 min from A . C.E R

-~ A(x>10) and first B |.3 [?][A(X=15)]

within 5 min from A

— Generalization CE
° ° "——>

 n-first / n-last o
B [A(X=15)
dﬂ'e-ﬂ_s.g/ GAUSS Kick-Off Meeting - Milan - Feb 2017 14

dependable evolvable pervasive software engineering

Patterns in TESLA

« TESLA allows *-within operators to be composed with each
other:

— In chains of events
e A and each B
within 3 min from A

and last C C E A
within 2 min from B
— In parallel
« A and each B
within 3 min from A —oO
and last C C B A
within 4 min from A

» Parameters can be added between events in a pattern

d‘ﬂ'&ﬂ{g/ GAUSS Kick-Off Meeting - Milan - Feb 2017 15

®
@
®
v

®
v

dependable evolvable pervasive software engineering

Parameters

» Parameters can be added between events in a pattern

— A(a=$x) and each B(a=$x) within 3 min from A

and last C(a=$x) within 4 min from A

d‘&'&ﬂ%/ GAUSS Kick-Off Meeting - Milan - Feb 2017 16

dependable evolvable pervasive software engineering

Negations and Aggregates

 Two kinds of negations:

— Interval based:
« A and last B
within 3 min from A
and not C between B and A

— Time based:

e A and not C within 3 min from A

 Similarly, two kinds of aggregates

— Interval based
* Use values appearing between two events

— Time based
* Use values appearing in a time interval

d‘&'&ﬂ%/ GAUSS Kick-Off Meeting - Milan - Feb 2017 17

dependable evolvable pervasive software engineering

Hierarchies of events

« TESLA allows to define hierarchies of events

— Composite events can be used to define (new) composite
events

d‘&'&ﬂ%/ GAUSS Kick-Off Meeting - Milan - Feb 2017 18

