
Test Generation as a Many-
objective Optimization Problem

Fitsum KIFETEW
kifetew@fbk.eu

Fondazione Bruno Kessler

Joint work with:
Annibale Panichella and Paolo Tonella

GAUSS Kick-off
February, 2017

Context

• Automated test case generation

• for structural code coverage

• of object-oriented programs

• using search-based techniques (SBST)

Search-Based Software Testing (SBST)

• Testing as optimization (search) problem

– Minimize/maximize objective functions

• Metaheuristic (search) algorithms

– e.g., Hill climbing, Evolutionary Algorithms, etc.

• Evolutionary algorithms

– Genetic Algorithms

Evolutionary Algorithms
Single-objective
Multi-objective

Test Case Generation

• Define a suitable
– Encoding

• Individuals as test cases

– fitness function (minimizing a distance)
• Approach level + Branch distance

public class A {
 …
 void m1 (int x, int y){
 …

 if (x == y){
 // target
 } …

 }
}

A A1 = new A();
int x = 5, y = 2;
A1.m1(x, y);

al = 0
bd = |x-y| = 3
f(tc1) = 0 + 0.75 = 0.75

T

F

A A1 = new A();
int x = 3, y = 2;
A1.m1(x, y);

bd = |x-y| = 1
fitness = 0 + 0.5 = 0.5

tc1

tc2

Single Target

• Several targets in SUT

• Optimize for one target at a time

2

3 4

6

5

1

7

8

9

Test Suite

{tc1,tc2,tc3,tc4}

tc1

tc2

tc3

tc4

Single Target

• Search is more focused
– Optimize only for a single branch

• Issues
– Search budget (re)allocation

– Accidental coverage

– Infeasible branches

• Several works based on this approach
[McMinn 2004]

WholeSuite

• Optimize towards all targets simultaneously

– Individuals are Test Suites (set of test cases)

– Test suite level operators

– Fitness: sum of all branch distances

• Not affected by infeasible branches

• Search is less focused (aggregates all
distances)

Problem Formulation

Let U = {u1, …, uk} be the uncovered targets in SUT,

find a set of non-dominated test cases

T = {t1, …, tn} that minimizes the following k
objectives:

A fitness vector <f1, …, fm> for a Test Case t

Pareto Optimality

Existing Algorithms

Many Objective Sorting Algorithm
(MOSA)

• scalability to a large number of objectives is important
(thousands)

• not all Pareto optimal test cases are useful, focus only
on subset of the Pareto optimal set

– focus on test cases that are closer to one or more

uncovered branches

• for equal coverage, shorter test cases are preferred

Example: Branch Coverage

int test (int a, int b, int c) {

if (a == b)

 return 1; // uncovered: b1

if (b == c)

 return -1; // uncovered: b2

return 0;

}

Traditional Ranking

b2

b1

First front

MOSA

b2

b1

MOSA

b2

b1

Selecting only a subset of the Pareto Front

First front

MOSA

b2

b1

Selecting only a subset of the Pareto Front

MOSA

b2

b1

Selecting only a subset of the Pareto Front

MOSA

b2

b1

Selecting only a subset of the Pareto Front

MOSA

Preference criterion
+

Crowding distance

Challenges

• MOSA outperformed WholeSuite [ICST’15]

• However,

– Large number of targets

– Reduced search efficiency

– E.g., mutation testing

• Reduce number of targets

DynaMOSA

• Select targets based on control dependency

1. U { root, dependents }

2. Run MOSA on U

3. U U + dependents (u); u covered

4. Goto step 2

• Search focuses on the important targets

• Equivalent to MOSA (theorem)

– But more efficient

DynaMOSA

Tool

• extended the framework

• for unit testing of Java classes

– Implementation of MOSA/DynaMOSA

– Statement, branch, mutation

 https://github.com/EvoSuite

https://github.com/EvoSuite
https://github.com/EvoSuite
https://github.com/EvoSuite

Evaluation

• Research Questions

– RQ1: coverage compared to WholeSuite

– RQ2: rate of convergence for equal coverage

• Subjects

– 346 Java classes

– 361K statements; 62K branches; 118K mutants

Results - RQ1 (effectiveness)

DynaMOSA achieves significantly better coverage than WholeSuite.

0

10

20

30

40

50

60

Statemnet Branch Mutation

%
 c

la
ss

e
s

b
e

tt
e

r

Coverage Metric

Coverage Improvement

WholeSuite

DynaMOSA

Average over all classes
DynaMOSA: 87% branch, 93% statement, 23% mutation
WholeSuite: 85% branch, 81% statement, 21% mutation

Results – RQ2 (efficiency)

DynaMOSA converges significantly faster than WholeSuite.

0

10

20

30

40

50

60

70

Statemnet Branch Mutation

%
 c

la
ss

e
s

b
e

tt
e

r

Coverage Metric

Convergence Speed

WholeSuite

DynaMOSA

Convergence: Example

Summary

• Reformulated branch coverage as a many-
objective optimization problem

• Introduced highly scalable MOSA

• Better performance than WholeSuite

– 87% branch, 93% statement, 23% mutation

– Quick convergence

• Next: Consider non-coverage objectives

– Execution time, memory consumption, …

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
Automated Test Case Generation as a Many-Objective Optimisation Problem
with Dynamic Selection of the Targets
In IEEE Transactions on Software Engineering (TSE). IEEE, 2017.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
Reformulating Branch Coverage as a Many-Objective Optimization Problem
In International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 2015.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
Results for EvoSuite-MOSA at the Third Unit Testing Tool Competition
In International Symposium on Search Based Software Testing (SBST). IEEE,
2015.

Referenecs

Thank you!

