

Test Generation as a Manyobjective Optimization Problem

Fitsum KIFETEW

kifetew@fbk.eu Fondazione Bruno Kessler

Joint work with: Annibale Panichella and Paolo Tonella

> GAUSS Kick-off February, 2017

Context

- Automated test case generation
- *for* structural code coverage
- *of* object-oriented programs
- *using* search-based techniques (SBST)

Search-Based Software Testing (SBST)

- Testing as optimization (search) problem
 Minimize/maximize objective functions
- Metaheuristic (search) algorithms
 e.g., Hill climbing, Evolutionary Algorithms, etc.
- Evolutionary algorithms
 Genetic Algorithms

Evolutionary Algorithms

Test Case Generation

- Define a suitable
 - Encoding
 - Individuals as test cases
 - fitness function (minimizing a distance)
 - Approach level + Branch distance

```
public class A {
...
void m1 (int x, int y){
...
if (x == y){
    // target
    } ...
}
```



```
tc1 A A1 = new A();
int x = 5, y = 2;
A1.m1(x, y);
al = 0
bd = |x-y| = 3
f(tc1) = 0 + 0.75 = 0.75
tc2 A A1 = new A();
int x = 3, y = 2;
A1.m1(x, y);
bd = |x-y| = 1
fitness = 0 + 0.5 = 0.5
```

Single Target

- Several targets in SUT
- Optimize for *one target at a time*

Single Target

• Search is more focused

Optimize only for a single branch

- Issues
 - Search budget (re)allocation
 - Accidental coverage
 - Infeasible branches
- Several works based on this approach [McMinn 2004]

WholeSuite

- Optimize towards all targets simultaneously
 - Individuals are *Test Suites* (set of test cases)
 - Test suite level operators
 - Fitness: sum of all branch distances

$$\min f_{\boldsymbol{U}}(T) = \sum_{\boldsymbol{u} \in \boldsymbol{U}} d(\boldsymbol{u}, T)$$

- Not affected by infeasible branches
- Search is less focused (aggregates all distances)

Problem Formulation

Let U = { u_1 , ..., u_k } be the **uncovered targets** in SUT, find a set of non-dominated test cases T = { t_1 , ..., t_n } that minimizes the following **k** objectives:

$$\begin{cases} \min f_1(t) = d(\mathbf{u}_1, t) \\ \vdots \\ \min f_k(t) = d(\mathbf{u}_k, t) \end{cases}$$

A fitness vector $\langle f_1, ..., f_m \rangle$ for a Test Case **t**

Pareto Optimality

A test case **x** dominates a test case **y** (x < y) iff : $\forall i \in \{1, ..., k\} f_i(x) \leq f_i(y)$ and $\exists j \in \{1, ..., k\}$ such that $f_i(x) < f_i(y)$

A test case **x**^{*} is **Pareto optimal** if and only if it is not dominated by any other test case.

Existing Algorithms

- traditional multi-objective EA (eg. NSGA-II) are not effective with > 3 objectives
- improvements: ϵ -dominance relation (ϵ -MOEA), IBEA, GrEA, POGA, θ -NSGA-III
- investigated for optimization problems with < 15 objectives
- number of non-dominated solutions increases
- designed to produce *a rich set of tread-offs*

Many Objective Sorting Algorithm (MOSA)

- scalability to a large number of objectives is important (thousands)
- not all Pareto optimal test cases are useful, focus only on subset of the Pareto optimal set
 - focus on test cases that are closer to one or more uncovered branches
- for equal coverage, shorter test cases are preferred

Example: Branch Coverage

```
int test (int a, int b, int c) {
    if (a == b)
        return 1; // uncovered: b1
    if (b == c)
        return -1; // uncovered: b2
    return 0;
}
```

Traditional Ranking

MOSA

MOSA

MOSA b₁ **b**₂

MOSA

Challenges

• MOSA outperformed WholeSuite [ICST'15]

- However,
 - Large number of targets
 - Reduced search efficiency
 - E.g., mutation testing

• → Reduce number of targets

DynaMOSA

- Select targets based on control dependency
 - 1. $U \leftarrow \{ root, dependents \}$
 - 2. Run MOSA on U
 - 3. $U \leftarrow U + dependents (u); u covered$
 - 4. Goto step 2
- Search focuses on the important targets
- Equivalent to MOSA (theorem)
 - But more efficient

DynaMOSA

	Instructions
S	int example(int a, int b, int c)
	{
	int x = 0;
1	if (a == b) $//b_1$
2	if (a > c) $//b_2$
3	x = 1;
4	else $//b_3$
5	x = 2;
6	if (b == c) $//b_4$
7	x = -1;
8	return x;
	}

Tool

extended the EV#SUITE framework

- for unit testing of Java classes
 - Implementation of MOSA/DynaMOSA
 - Statement, branch, mutation

https://github.com/EvoSuite

Evaluation

- Research Questions
 - **RQ1**: coverage compared to WholeSuite
 - **RQ2**: rate of convergence for equal coverage

- Subjects
 - 346 Java classes
 - 361K statements; 62K branches; 118K mutants

Results - RQ1 (effectiveness)

Average over all classes

DynaMOSA: 87% branch, 93% statement, 23% mutation *WholeSuite:* 85% branch, 81% statement, 21% mutation

DynaMOSA achieves significantly better coverage than WholeSuite.

Results – RQ2 (efficiency)

Convergence Speed

DynaMOSA converges significantly faster than WholeSuite.

Convergence: Example

Summary

- Reformulated branch coverage as a manyobjective optimization problem
- Introduced highly scalable MOSA
- Better performance than WholeSuite
 - 87% branch, 93% statement, 23% mutation
 - Quick convergence
- Next: Consider non-coverage objectives

- Execution time, memory consumption, ...

Referenecs

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.

Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets

In IEEE Transactions on Software Engineering (TSE). IEEE, 2017.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. *Reformulating Branch Coverage as a Many-Objective Optimization Problem* In International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2015.

Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. *Results for EvoSuite-MOSA at the Third Unit Testing Tool Competition* In International Symposium on Search Based Software Testing (SBST). IEEE, 2015.

Thank you!