
Adaptive testing of dynamic systems 

GAUSS Project - Milano, February 2017 

Roberto Pietrantuono, Stefano Russo 
 

Dessert Research Group 
Università di Napoli Federico II  

Istituto di Scienza e Tecnologie 
dell’Informazione “A. Faedo” 

Consiglio Nazionale delle Ricerche 

Antonia Bertolino, Breno Miranda 



Collaboration CNR-UNINA 

Joint activity on WP6 – online V&V 

¢  Research area: reliability testing  

• Testing for improvement of delivered reliability  

¢  First output: a technique for adaptive test selection - 
covrel 

• Will be presented in May at ICSE 2017 

 

2 



The COVREL approach 

Goal 
¢   Test case selection for reliability improvement 

Idea 
¢  Combine coverage-driven and operational testing 
¢  Adaptive selection 

Method 
¢  Iterative test allocation to partitions driven by online test results 
¢  Test selection within partition based on count spectrum  

Evaluation 
¢  Experiment on 18 version from 4 subjects from SIR   
¢  Comparison against operational testing and white-box testing 
¢  A prototype is available for repeatability: 

http://labsedc.isti.cnr.it/covrel2017   

 3 



Background 

Operational profile testing is a pillar of SRE 

¢  Selecting inputs w.r.t. the expected usage at runtime 

¢  Suitable for improvement or assessment of reliability  
• PROS 

–  The most natural way to deal with reliability = p(failure in 
operation) 

• CONS 
–  “Saturation” effect at high reliability levels 
–  Profile knowledge 

4 



Background 

White-box testing based on count spectra  
¢  A spectrum characterizes a program's behavior by recording the set of 

entities that are exercised as the program executes. 

¢  Traditional coverage-based criteria are based on “hit-spectrum”, i.e. 
they count if an entity is covered (1) or not (0) 

¢  We use count spectra (record also the number of times an entity is 
executed), with the aim of considering how frequently entities are 
exercised 

•  IDEA 
–  Considering the frequency of coverage can  

help bias test selection according to a user’s  
profile 

–  Entities can be weighted proportionally (as in  
AST’16), or vice versa inversely proportional  
(as in covrel), to usage frequency 

5 

Branch ID Hit Count 

1 1 427 

2 1 10834 

3 1 11623 

4 0 0 

5 1 487 

6 1 3972 

7 1 10543 

8 1 87 

9 0 0 

10 1 67 



Overview 

6 

Notation 
¢  Di: subdomains (partitions) 
¢  T: budget (test cases)  
¢  Ti: tests allocated to Di 

¢  Profile: distribution over Di 

¢  pi: prob. of taking inputs 
from Di    

¢  k: iteration index 

Assumptions 
¢  Perfect oracle 
¢  Independence runs of TC  
¢  Output independent of the 

history 
¢  Coverage associated with 

TCs can be obtained 

Initial # of tests Ti
0 

allocated to Di 

Test 
Allocation 

Start Testing 

Stop Testing 
Tk > T 

yes No 

Allocate Ti
k tests to Di 

Test 
Selection 

Count spectrum-based  
selection algorithm 

IS-based  
allocation algorithm 

Test Execution  
and Spectrum Learning 

Select Ti
k tests in each Di 



Test cases allocation 

Adaptive re-allocation  
¢  Allocation objective: direct more tests where actually needed 

•  φi : failure rate = number of failing tests over executed ones 

•  θi = pi φi : weighted failure rate = unreliability contribution 

¢  θi
k

  at each iteration k is used to direct more testing to partitions 
that are expected to contribute more to improve delivered 
reliability  

¢  θi
k can be subject to strong variation =>Adaptive sampling  

 

 

7 

Test Allocation 



Importance Sampling 

Importance Sampling method 

¢  Progressively approximate true (unknown) distribution of a variable 

¢  Beliefs (i.e., hypotheses) about the distribution represented by “samples” 

¢  At each iteration, more samples (i.e., tests) drawn from the best 
“hypothesis”  

¢  “Best” in covrel=> Distribution to maximize exp. reliability contribution 

Steps 
1.  Initial allocation 
2.  Probability Update 
3.  Assignment  

8 

Test Allocation 



Probability 
Update 

Allocate Test 
Case 

Initial 
Assignment 

Update  

Importance Sampling 

9 

1  Initial allocation 

Assuming no domain-
specific knowledge => 
proportional-to-usage 
allocation 

T(0) small percentage of T 
to trigger the algo (e.g., 
5%) 

 

 

Initial  

Test Allocation 

 
 

!!(!) ≈ !(!) !!
!!!

!!!
!



!!(!) = !!!(!!!) + (1− !)(1− !!(!!!))!

Allocate Test 
Case 

Initial 
Assignment 

Update  

Importance Sampling 

10 

2  Probability update 
 
 
 
 

 
 

•  πi
(k)

  => relative importance given 
to Di  at iteration k  

•  γ  => factor regulating the 
importance of the past w.r.t. to 
current observations 

 
 

Probability 
Update 

Test Allocation 



Initial 
Assignment 

Probability 
Update 

!!(!!!) ≈ !(!!!)!!(!) !

Importance Sampling 

11 

3  Assignment 

•  T(k+1) computed by KLD Adaptation 
[1] as T(k+1) = f(Error, Confidence)  

 

•  Distribute T(k+1) by sampling 
according to πi

(k)
 

 

•  Output: Ti
(k+1) 

 

Test Allocation 

[1] D. Fox. Adapting the Sample Size in Particle Filters Through KLD- 
Sampling. Int. Journal of Robotics Research, 22:2003, 2003. 

Allocate Test 
Case 

Update  



Within-partition coverage-based Test Selection 

12 

Initial 
Selection 

•  Random selection 

Compute 
spectrum 

•  covrel computes the 
cumulative count 
spectrum achieved so far 

Order 
entities 

•  Ordered by their frequency of usage 
•  1/3 of entities to high frequency group 
•  1/3 to medium 
•  1/3 to low 

Rank 
entities 

•  Weights assigned to each group 
•  W(high)= 10−1  
•  W(medium) = 100  
•  W(low) = 101  

Select 
tests 

•  Test cases with 
the highest 
ranks are 
selected 

Next Iteration 

Test Selection 

3 Coverage Criteria:  
Function, Statement, Branch 



EVALUATION 
COVREL 

13 



Empirical Evaluation. Setting (1/2) 

Research question 
¢  Is covrel more effective at reliability improvement than 

traditional operational profile-based testing? 
  

Factors 
Subjects 
¢  4 programs - 18 versions from SIR 

Test suite available from SIR 
Partitions = Functionalities 
Fault matrices generations: “easy” and “hard” faults matrix 
Operational Profile. 50 randomly generated profiles 
Coverage criteria: function, branch, and statement  

 
 

14 



Empirical Evaluation. Setting (2/2) 

Number of runs: 50 profiles x 2 techniques x 18 subjects x 2 
matrices x 3 criteria = 10800 

Evaluation metrics (covrel vs operational testing) 
1.  Number of test cases required to reach the maximum reliability 

achievable with the test suite 
2.  Values of reliability achieved with equal number of test cases  

Further evaluation: covrel vs coverage-based testing 
 

15 



Empirical Evaluation. Subjects 

16 

Program  LoC  Vers.  Tests 
cases  Seeded 

Faults  Detectable 
Faults 

“Hard” Faults 

Grep 9463  v1 809  18 5 4 
Grep 9987  v2 809  8 4 4 

Grep 10124  v3 809  18 8 5 

Grep 10143  v4 809  12 3 3 

Gzip  4594  v1 214  16 7 6 

Gzip 5083  v2 214  7 3 1 

Gzip 5233  v4 214  12 3 3 

Gzip 5745  v5 214  14 5 4 

Sed 9867  v2 360  5 5 3 

Sed 7146  v3 360  6 6 5 

Sed 7086  v4 363 4 1 1 

Sed 13398  v5 370 4 4 4 

Sed 13413  v6 370 6 6 6 

Sed 14456  v7 370 4 4 4 

Flex 9558  v1 567  19 16 8 

Flex 10274  v2 670  20 13 9 

Flex 10296  v3 670  17 9 9 

Flex 11447  v4 670  16 11 8 



Results: TCs to reach “reliability=1”  

17 

Configuration Outcome Mean  Median 
Conf. 1: Function-Hard FM Wins 35.5 40 

Losses 12.92 8.5 

Ties 1.57 0 

Conf. 2: Branch-Hard FM Wins 35.14 39 

Losses 12.78 10 

Ties 2.07 0 

Conf. 3: Statement-Hard FM Wins 36.14 41 

Losses 11.85 8.5 

Ties 2 0 

Conf. 4: Function-Default FM Wins 34.16 37 

Losses 14.16 9 

Ties 1.66 0 

Conf. 5: Branch-Default FM Wins 33.05 36.5 

Losses 15.88 13 

Ties 1.05 0 

Conf. 6: Statement-Default FM Wins 34.38 39.5 

Losses 14.38 9.5 

Ties 1.22 0.5 

In the average, Covrel > 
OT in all configurations 
Covrel > OT in 77 out of 96 
scenarios 
Summing over repetitions, 
Covrel > OT in all conf. 
Summing over repetitions, 
Covrel > OT for 14 out of 
18 subjects 

Pairwise Comparison 

covrel OT 

Mean 34.62 13.81  

Median 39.00 9.50 

P-value 3.1270e-09 - 

Statistical comparison 

#of wins, losses and ties of covrel vs OT over 50 runs 



Results: Reliability growth 

Reliability growth at 
three checkpoints: 
10%-50%-90% of test 
cases needed to 
achieve reliability 1 

18 

Number of wins in terms of greater 
 reliability at 10/50/90% of tests 

10% 50% 90% 
Covrel Mean 11.40 17.12  16.26 

Covrel Median 8.5  11.85 13.77 

OT Mean 7 16 15 

OT Median 8 9 10 

Covrel-OT  
P-value 0.2168  0.0087  0.4156  

In the average, covrel>OT for all configurations 
  

Expectation: covrel > OT for higher values of reliability 
¢  (Covrel – OT)50% > (Covrel – OT)90% > (Covrel – OT)10% 

¢  Most of improvement of covrel is between 90% and 100% 
¢  (Covrel – OT)hardFaults > (Covrel – OT)AllFaults 



covrel vs coverage-based testing comparison 

N° tests to get 
maximum attainable 
reliability 
‘-’ means maximum 
attainable coverage 
achieved before 
removing all faults 
Greedy total and greedy 
additional 

Covrel > total in 85% 
of cases 
Covrel > additional in 
50% of cases 

 

19 

Program  Function Branch Statement 

covrel total covrel total covrel total 

Grep v1 304 547 130 - 113 574  

Grep v2 623 - 321 531 358 501 

Grep v3 72 - 156 487 97 477 

Grep v4 611 728 108 724 108 728 

Gzip v1  178 205 118 205 124 206 

Gzip v2 26 3 28 1 29 3 

Gzip v4 25 208 26 207 25 207 

Gzip v5 62 204 66 207 60 206 

Sed v2  84 - 114 92 72 88 

Sed v3 62 - 44 352 42 352 

Sed v4  47 - 26 123 45 131 

Sed v5 11 - 11 362 10 362 

Sed v6 70 - 47 104 60 89 

Sed v7 50 - 42 - 44 - 

Flex v1 18 411 16 379 18 382 

Flex v2 276 669 354 669 314 664 

Flex v3 542 - 611 614 622 618 

Flex v4 96 4 228 4 257 4 



Threats 

Internal 
¢  Profile representativeness 
¢  Subjects’ test suites limitations 

Construct 
¢  Measured testing reliability ≠ operational reliability 

External  
¢  Representativeness of subjects and faults 
¢  Programs with similar features (e.g., same language, small size)  
¢  Different versions are not different programs 

20 



Verifiability 

Artifacts for automating experiments  

¢  Prototype written in Java and Python 

¢  http://labsedc.isti.cnr.it/covrel2017  

¢  Takes the subject program and version, and the number of 
repetitions (i.e., of profiles to generate) 

¢  Detailed results in CSV files, one per configuration 

¢  Operating instructions to test other SIR programs  

21 



Relation to GAUSS and future work 

Challenges and next steps 

¢  Test case generation 
•  Spectra collection/online learning to generate tests 

¢  Adaptive allocation and “white-box” test selection are decoupled – 
further approaches can be experimented to improve both tasks 

¢  Application to larger applications 
•  Apps possibly closer to GAUSS target 
•  Scalability 

 

¢  Runtime testing 
¢  Iterative closed-loop approach enables runtime testing 

•  Adaptiveness w.r.t. runtime data rather than (or in addition to) test 
data 

•  Runtime data would enable a better approximation of profiles 
•  Reliability assessment, besides improvement 

22 



23 

Thanks for the attention ! 
Questions ? 

 
 


