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ABSTRACT
Infrastructure-as-a-Service (IaaS) clouds are prone to performance
anomalies due to their complex nature. Although previous work
has shown the effectiveness of using statistical learning to detect
performance anomalies, existing schemes often assume labelled
training data, which requires significant human effort and can only
handle previously known anomalies. We present an Unsupervised
Behavior Learning (UBL) system for IaaS cloud computing infras-
tructures. UBL leverages Self-Organizing Maps to capture emer-
gent system behaviors and predict unknown anomalies. For scala-
bility, UBL uses residual resources in the cloud infrastructure for
behavior learning and anomaly prediction with little add-on cost.
We have implemented a prototype of the UBL system on top of the
Xen platform and conducted extensive experiments using a range
of distributed systems. Our results show that UBL can predict per-
formance anomalies with high accuracy and achieve sufficient lead
time for automatic anomaly prevention. UBL supports large-scale
infrastructure-wide behavior learning with negligible overhead.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability, and ser-
viceability

General Terms
Reliability, Management, Experimentation

Keywords
Unsupervised System Behavior Learning, Cloud Computing, Anomaly
Prediction

1. INTRODUCTION
Infrastructure-as-a-Service (IaaS) cloud infrastructures [1] allow

users to lease resources in a pay-as-you-go fashion. Due to its
inherent complexity and sharing nature, the cloud system is prone
to performance anomalies due to various reasons such as resource
contentions, software bugs, or hardware failures. It is a daunting
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task for system administrators to manually keep track of the execu-
tion status of tens of thousands of virtual machines (VMs) all the
time. Moreover, delayed anomaly detection can cause long service
level objective (SLO) violation time, which is often associated with
a large financial penalty. Thus, it is highly desirable to provide
automatic anomaly prediction techniques that can forecast whether
a system will enter an anomalous state and trigger proper preventive
actions to steer the system away from the anomalous state.
It is challenging to achieve efficient anomaly management for

large-scale IaaS cloud infrastructures. First, applications running
inside the cloud often appear as black-box to the cloud service
provider. Therefore, it is impractical to apply previous white-box
or grey-box anomaly detection techniques (e.g., [7]) which require
application instrumentation. Second, a large-scale cloud infras-
tructure often runs thousands of applications concurrently. The
anomaly management scheme itself must be light-weight and should
operate in an online fashion. Third, it is difficult, if not totally
impossible, to obtain labelled training data (i.e., measurement sam-
ples associated with normal or abnormal labels) from production
cloud systems. As a result, it is hard to apply previous supervised
learning techniques [15, 17, 33] for monitoring production cloud
systems. More importantly, supervised learning techniques can
only detect previously known anomalies.
In this paper, we present the design and implementation of an

Unsupervised Behavior Learning (UBL) system for virtualized cloud
computing infrastructures. UBL does not require any labelled train-
ing data, allowing it capture emergent system behaviors. This makes
it possible for UBL to predict both known anomalies and unknown
anomalies. UBL employs a set of continuous VMbehavior learning
modules to capture the patterns of normal operations of all appli-
cation VMs. To avoid manual data labeling and capture emergent
system behaviors, UBL leverages an unsupervised learning method
called the Self Organizing Map (SOM) [24]. We chose the SOM
because it is capable of capturing complex system behaviors while
being computationally less expensive than comparable approaches
such as k-nearest neighbor [32]. To predict anomalies, UBL looks
for early deviations from normal system behaviors. UBL only re-
lies on system-level metrics that can be easily acquired via the
hypervisor or guest OS to achieve black-box anomaly prediction.
For scalability, UBL takes a decentralized and virtualized learn-

ing approach that leverages residual resources in the cloud infras-
tructure for behavior learning and anomaly prediction. It encapsu-
lates the behavior analysis program within a set of special learn-
ing VMs. We then use the Xen credit scheduler [8] to enforce
the learning VM to only use residual resources without affecting
other co-located application VMs. We can also easily migrate the
learning VM between different hosts using live VMmigrations [14]
to utilize time-varying residual resources on different hosts.
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Abstract—Virtualized cloud systems are prone to perfor-
mance anomalies due to various reasons such as resource
contentions, software bugs, and hardware failures. In this
paper, we present a novel PREdictive Performance Anomaly
pREvention (PREPARE) system that provides automatic per-
formance anomaly prevention for virtualized cloud computing
infrastructures. PREPARE integrates online anomaly predic-
tion, learning-based cause inference, and predictive prevention
actuation to minimize the performance anomaly penalty
without human intervention. We have implemented PREPARE
on top of the Xen platform and tested it on the NCSU’s Virtual
Computing Lab using a commercial data stream processing
system (IBM System S) and an online auction benchmark
(RUBiS). The experimental results show that PREPARE can
effectively prevent performance anomalies while imposing low
overhead to the cloud infrastructure.
Index Terms—performance anomaly prevention, online

anomaly prediction, cloud computing

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud systems [1] al-
low users to lease resources in a pay-as-you-go fashion.
Cloud systems provide application service providers (ASPs)
with a more cost-effective solution than in-house computing
by obviating the need for ASPs to own and maintain a
complicated physical computing infrastructure. Since cloud
systems are often shared by multiple users, virtualization
technologies [2], [3] are used to achieve isolation among
different users. However, applications running inside the
cloud are prone to performance anomalies due to various
reasons such as resource contentions, software bugs, and
hardware failures. Although application developers often
perform rigorous debugging offline, many tough bugs only
manifest during large-scale runs. It will be a daunting
task for system administrators to manually keep track of
the execution status of many virtual machines (VMs) all
the time. Moreover, manual diagnosis can cause prolonged
service level objective (SLO) violation time, which is often
associated with big financial penalty.
It is challenging to diagnose and prevent performance

anomalies in virtualized cloud computing environments.
First, the application running inside the IaaS cloud often
appears as a black-box to the cloud service provider,
which makes it infeasible to obtain detailed measurements
about the application and apply previous intrusive diagnosis

techniques. Second, the cloud management system wishes
to automatically prevent any performance anomaly in order
to minimize the financial penalty. As a result, traditional
reactive anomaly management is often insufficient.
In this paper, we present a novel PREdictive Performance

Anomaly pREvention (PREPARE) system for virtualized
cloud systems. PREPARE integrates online anomaly pre-
diction and virtualization-based prevention techniques (e.g.,
elastic resource scaling [4], [5] and live VM migration [6])
to automatically prevent performance anomalies in cloud
systems. PREPARE applies statistical learning algorithms
over system-level metrics (e.g., CPU, memory, network
I/O statistics) to achieve two objectives: 1) early anomaly
detection that can raise advance anomaly alerts before
a performance anomaly happens; and 2) coarse-grained
anomaly cause inference that can pinpoint faulty VMs
and infer the system metrics that are related to the per-
formance anomaly. Based on the informative prediction
results, PREPARE leverages virtualization technologies to
perform VM perturbations for automatically preventing per-
formance anomalies. PREPARE also performs false alarm
filtering and prevention effectiveness validation to cope
with online anomaly prediction errors. Specifically, this
paper makes the following contributions:

• We present PREPARE, a prediction-driven perfor-
mance anomaly prevention system for virtualized
cloud computing infrastructures. PREPARE is non-
intrusive and application-agnostic, which can be read-
ily applied to any application running inside the IaaS
cloud.

• We show how to achieve accurate and informative
online anomaly prediction using only system-level
metrics by integrating the 2-dependent Markov chain
model with the tree-augmented Bayesian networks
(TAN) model.

• We introduce several prevention validation schemes to
cope with online anomaly prediction errors.

We have implemented a prototype of PREPARE on top
of the Xen platform [2]. We have deployed and tested
PREPARE on NCSU’s virtual computing lab (VCL) [7]
that operates in a similar way as Amazon EC2 [1]. We
conducted extensive experiments by running real distributed

Fingerprinting the Datacenter:
Automated Classification of Performance Crises

Peter Bodı́k
EECS Department

UC Berkeley
Berkeley, CA, USA

bodikp@cs.berkeley.edu

Moises Goldszmidt
Microsoft Research

Mountain View, CA, USA
moises@microsoft.com

Armando Fox
EECS Department

UC Berkeley
Berkeley, CA, USA
fox@cs.berkeley.edu

Dawn B. Woodard
Cornell University
Ithaca, NY, USA

woodard@cornell.edu

Hans Andersen
Microsoft

Redmond, WA, USA
hansande@microsoft.com

Abstract
Contemporary datacenters comprise hundreds or thousands
of machines running applications requiring high availability
and responsiveness. Although a performance crisis is easily
detected by monitoring key end-to-end performance indica-
tors (KPIs) such as response latency or request throughput,
the variety of conditions that can lead to KPI degradation
makes it difficult to select appropriate recovery actions.

We propose and evaluate a methodology for automatic
classification and identification of crises, and in particular
for detecting whether a given crisis has been seen before, so
that a known solution may be immediately applied. Our ap-
proach is based on a new and efficient representation of the
datacenter’s state called a fingerprint, constructed by statis-
tical selection and summarization of the hundreds of perfor-
mance metrics typically collected on such systems. Our eval-
uation uses 4 months of trouble-ticket data from a produc-
tion datacenter with hundreds of machines running a 24x7
enterprise-class user-facing application. In experiments in a
realistic and rigorous operational setting, our approach pro-
vides operators the information necessary to initiate recov-
ery actions with 80% correctness in an average of 10 min-
utes, which is 50 minutes earlier than the deadline provided
to us by the operators. To the best of our knowledge this is
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the first rigorous evaluation of any such approach on a large-
scale production installation.

Categories and Subject Descriptors C.4 [Performance of
systems]: Reliability, availability, and serviceability

General Terms Performance

Keywords datacenters, performance, web applications

1. Introduction
A datacenter performance crisis occurs when availability or
responsiveness goals are compromised by inevitable hard-
ware and software problems [16]. The application operators’
highest priority is to stabilize the system and avoid crisis es-
calation; they typically do this by inspecting collected sys-
tem metrics (telemetry), logs, and alarms. We aim to provide
tools to automate problem identification, thereby speeding
stabilization. In particular, performance crises may recur be-
cause the bug fix for the underlying problem has not yet been
deployed, because the fix is based on a misunderstanding
of the root cause [3, 10], or because of emergent misbehav-
iors due to large scale and high utilization1. If operators can
quickly determine whether an emerging crisis is similar to
a previously-seen crisis, a known remedy may avoid escala-
tion and allow root-cause analysis to proceed offline.

Automatic identification of performance crises requires
mechanisms to capture these patterns and match them against
previous patterns in a database, effectively reducing prob-
lem identification to information retrieval. Earlier work [7]
showed that while this is possible, crisis identification suf-
fers if either too few or too many metrics are used to distin-
guish crises, or if the wrong subset of metrics is analyzed;

1 Jeff Dean, Google Fellow, keynote at LADIS 2009 workshop
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ABSTRACT
We present a method for automatically extracting from a
running system an indexable signature that distills the es-
sential characteristic from a system state and that can be
subjected to automated clustering and similarity-based re-
trieval to identify when an observed system state is simi-
lar to a previously-observed state. This allows operators to
identify and quantify the frequency of recurrent problems, to
leverage previous diagnostic efforts, and to establish whether
problems seen at different installations of the same site are
similar or distinct. We show that the naive approach to
constructing these signatures based on simply recording the
actual “raw” values of collected measurements is ineffective,
leading us to a more sophisticated approach based on sta-
tistical modeling and inference. Our method requires only
that the system’s metric of merit (such as average trans-
action response time) as well as a collection of lower-level
operational metrics be collected, as is done by existing com-
mercial monitoring tools. Even if the traces have no annota-
tions of prior diagnoses of observed incidents (as is typical),
our technique successfully clusters system states correspond-
ing to similar problems, allowing diagnosticians to identify
recurring problems and to characterize the “syndrome” of a
group of problems. We validate our approach on both syn-
thetic traces and several weeks of production traces from
a customer-facing geoplexed 24 × 7 system; in the latter
case, our approach identified a recurring problem that had
required extensive manual diagnosis, and also aided the op-
erators in correcting a previous misdiagnosis of a different
problem.
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Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Algorithms, Performance, Experimentation

Keywords
Bayesian networks, clustering, information retrieval, perfor-
mance objectives, signatures

“Those who cannot remember the past are
condemned to repeat it.” — George Santayana

1. INTRODUCTION
When complex software systems misbehave—whether they

suffer a partial failure, violate an established service-level ob-
jective (SLO), or otherwise respond in an unexpected way
to workload—understanding the likely causes of the problem
can speed repair. While a variety of problems can be solved
by simple mechanisms such as rebooting [3], many cannot,
including problems related to a misallocation or shortage of
resources that leads to a persistent performance problem or
other anomaly that can be addressed only by a nontrivial
configuration change. Understanding and documenting the
likely causes of such problems is difficult because they often
emerge from the behavior of a collection of low-level metrics
such as CPU load, disk I/O rates, etc., and therefore sim-
ple “rules of thumb” focusing on a single metric are usually
misleading [5].

Furthermore, today there is no systematic way to leverage
past diagnostic efforts when a problem arises, even though
such efforts may be expensive and are on the critical path of
continued system operation. To that end we would like to
be able to recognize and retrieve similar problem instances
from the past. If the problem was previously resolved, we
can try to justify the diagnosis and perhaps even apply the
repair actions. Even if the problem remained unresolved,
we could gather statistics regarding the frequency or even
periodicity of the recurrence of that problem, accumulating
necessary information for prioritizing or escalating diagnosis
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Violations of service level objectives (SLO) in Internet services are 
urgent conditions requiring immediate attention. Previously we showed 
[1] that Tree-Augmented Bayesian Networks or TAN models are 
effective at identifying which low-level system properties were correlated 
to high- level SLO violations (the metric attribution problem) under stable 
workloads. In this paper we extend our approach to adapt to changing 
workloads and external disturbances by maintaining an ensemble of 
probabilistic models, adding new models when existing ones do not 
accurately capture current system behavior. Using realistic workloads on 
an implemented prototype system, we show that the ensemble of TAN 
models captures the performance behavior of the system accurately under 
changing workloads and conditions. We fuse diagnoses from the 
ensemble of models to identify likely causes of the performance problem, 
with results comparable to those produced by an oracle that continuously 
changes the model based on advance knowledge of the workload. The 
cost of inducing new models and managing the ensembles is negligible, 
making our approach both immediately practical and theoretically 
appealing. 
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ABSTRACT
Large-scale data center networks are complex—comprising
several thousand network devices and several hundred thou-
sand links—and form the critical infrastructure upon which
all higher-level services depend on. Despite the built-in re-
dundancy in data center networks, performance issues and
device or link failures in the network can lead to user-perceived
service interruptions. Therefore, determining and localiz-
ing user-impacting availability and performance issues in the
network in near real time is crucial. Traditionally, both pas-
sive and active monitoring approaches have been used for
failure localization. However, data from passive monitoring
is often too noisy and does not e↵ectively capture silent or
gray failures, whereas active monitoring is potent in detect-
ing faults but limited in its ability to isolate the exact fault
location depending on its scale and granularity.

Our key idea is to use statistical data mining techniques
on large-scale active monitoring data to determine a ranked
list of suspect causes, which we refine with passive monitor-
ing signals. In particular, we compute a failure probability
for devices and links in near real time using data from active
monitoring, and look for statistically significant increases in
the failure probability. We also correlate the probabilistic
output with other failure signals from passive monitoring
to increase the confidence of the probabilistic analysis. We
have implemented our approach in the Windows Azure pro-
duction environment and have validated its e↵ectiveness in
terms of localization accuracy, precision, and time to local-
ization using known network incidents over the past three
months. The correlated ranked list of devices and links is
surfaced as a report that is used by network operators to in-
vestigate current issues and identify probable root causes.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management; Network monitoring
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General Terms
Algorithms; Management

Keywords
Failure localization; Data center networks

1. INTRODUCTION
Communications in data centers today are based on large-

scale complex networks that concurrently support a variety
of distinct services (e.g., search, email, cloud storage and
compute). As an example, the Windows Azure network
consists of over 7 thousand network devices (e.g., routers)
and over 220 thousand links, which connect together all the
servers in all Windows Azure data centers worldwide. All
Windows Azure Services [14] depend on a healthy network
for providing highly-available and scalable o↵erings. De-
spite the built-in redundancy in data center networks, per-
formance issues or failures in the network can lead to user-

perceived service interruptions. Therefore, determining and
localizing user-impacting availability and performance issues
in the network in near real time is crucial.

Localizing network faults is done by knowledgeable net-
work operations teams who work with associated on-call en-
gineers to resolve problems in real time with the help of
monitoring data. Such an approach can be time consuming,
tedious, and is further exacerbated by monitoring noise and
the increasing size of the network. As the scale of the net-
work grows, automated fault localization becomes increas-
ingly important since it can reduce mean-time-to-recovery
and service disruption.

Network monitoring is at the heart of failure localiza-
tion and is divided into two categories: passive and active

monitoring. The passive approach typically involves polling
the network devices periodically to collect various teleme-
try data about their health and the tra�c that passes by.
The system will then analyze the local telemetry data and
raise availability and performance alerts at the level of indi-
vidual devices and links when it detects any abnormalities
[4, 5, 13]. While these alerts are often useful in localizing
failures, they are also noisy and not a direct signal for user-
perceived failures1, which turns troubleshooting a particular

1User-perceived network failures refer to network failures
that have a direct e↵ect on user tra�c, where users are pri-
marily the services running on top of the network.
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Abstract

Today’s cloud network platforms allow tenants to con-
struct sophisticated virtual network topologies among
their VMs on a shared physical network infrastructure.
However, these platforms provide little support for ten-
ants to diagnose problems in their virtual networks.
Network virtualization hides the underlying infrastruc-
ture from tenants as well as prevents deploying exist-
ing network diagnosis tools. This paper makes a case
for providing virtual network diagnosis as a service in
the cloud. We identify a set of technical challenges in
providing such a service and propose a Virtual Network
Diagnosis (VND) framework. VND exposes abstract
configuration and query interfaces for cloud tenants to
troubleshoot their virtual networks. It controls software
switches to collect flow traces, distributes traces stor-
age, and executes distributed queries for different ten-
ants for network diagnosis. It reduces the data collection
and processing overhead by performing local flow cap-
ture and on-demand query execution. Our experiments
validate VND’s functionality and shows its feasibility
in terms of quick service response and acceptable over-
head; our simulation proves the VND architecture scales
to the size of a real data center network.

1 Introduction

Recent progress on network virtualization has made it
possible to run multiple virtual networks on a shared
physical network, and decouple the virtual network con-
figuration from the underlying physical network. To-
day, cloud tenants can specify sophisticated logical net-

Copyright c� 2013 by the Association for Computing Machinery, Inc.
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work topologies among their virtual machines (VMs)
and other network appliances, such as routers or mid-
dleboxes, and flexibly define policies on different virtual
links [7, 4]. The underlying infrastructure then takes care
of the realization of the virtual networks by: for example,
deploying VMs and virtual appliances, instantiating the
virtual links, setting up traffic shapers/bandwidth reser-
vations as needed, and logically isolating the traffic of
different tenants (e.g., using VLANs or tunnel IDs).

While virtual networks can be implemented in a num-
ber of ways, we focus on the common overlay-based ap-
proach adopted by several cloud networking platforms.
Examples that support such functionality include Open-
Stack Neutron [2], VMware/Nicira’s NVP [1], and IBM
DOVE [17]. Configuring the virtual networks requires
setting up tunnels between the deployed VM instances
and usually includes coordinated changes to the con-
figuration of several VMs, virtual switches, and poten-
tially physical switches and virtual/physical network ap-
pliances. Unfortunately, many things could go wrong in
such a complicated system. For example, misconfigura-
tion at the virtual network level might leave some VMs
disconnected, or receiving unintended flows, rogue VMs
might overload a virtual network with broadcast packets
on a particular virtual or physical switch.

Because virtualization abstracts the underlying de-
tails, cloud tenants lack the necessary visibility to per-
form troubleshooting. More specifically, tenants only
have access to their own virtual resources, and, crucially,
each virtual resource may map to multiple physical re-
sources, i.e., a virtual link may map to multiple physi-
cal links. When a problem arises, there is no way today
to systematically obtain the relevant data from the ap-
propriate locations and expose them to the tenant in a
meaningful way to facilitate diagnosis.

In this paper, we make the case for VND, a frame-
work that enables a cloud provider to offer sophisticated
virtual network diagnosis as a service to its tenants. Ex-
tracting the relevant data and exposing it to the tenant
forms the basis for VND. Yet, this is not trivial because
several requirements must be met when extracting and
exposing the data: we must preserve the abstracted view
that the tenant is operating on, ensure that data gathering
and transfer do not impact performance of ongoing con-
nections, preserve isolation across tenants, and enable
suitable analysis to be run on the data, while scaling to
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(Fault location)

20:30

20:40

20:35

Ranking of anomalies
(Sssysinterrupts, bono) 
(PktsReceived5sPython, huawei2)
(Sscpurawnice, sprout)
(Sproutqueuesizevariance, sprout)
(Sprouthomerlatencyhwm, sprout)
…
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Fault Localization
Causality graph

- Built from the baseline model with machine learning
- Vertices: (metric, resource)
- Edges: correlations (Granger causality)
- Edges labels: weight probabilities

KPI = (metric, resource) 
Table 2.1: The columns report the identifier of the vertex of Figure 2.1 (column vertex )

and the associated KPI as hmetric, nodei. The table spans two pages.

vertex KPI vertex KPI vertex KPI

0 hSuccessfulrate, CLEARwATERi 60 hBusyCpu, homeri 120 hSsrawcontexts, homesteadi
1 hAvgReqQueueLength, bonoi 61 hBytesReceivedPerSec, homeri 121 hSsrawinterrupts, homesteadi
2 hAvgWaitTime, bonoi 62 hBytesSendPerSec, homeri 122 hSsrawswapout, homesteadi
3 hBonoconnectedclients.0, bonoi 63 hCxtSwitchesPerSec, homeri 123 hSssyscontext, homesteadi
4 hBonolatencyaverage, bonoi 64 hMemoryCached, homeri 124 hSssysinterrupts, homesteadi
5 hBonolatencycount, bonoi 65 hMemoryInBu↵ers, homeri 125 hSwapSpaceUsed, homesteadi
6 hBonolatencyhwm, bonoi 66 hMemoryUsed, homeri 126 hSystemCpu, homesteadi
7 hBonolatencylwm, bonoi 67 hPagesFaultsPerSec, homeri 127 hTotalNumberProcesses, homesteadi
8 hBonolatencyvariance, bonoi 68 hPktsReceived5sPython, homeri 128 hUserCpu, homesteadi
9 hBonoqueuesizehwm, bonoi 69 hPktsSent5sPython, homeri 129 hWaitIoCpu, homesteadi
10 hBonoqueuesizelwm, bonoi 70 hSocketsInUse, homeri 130 hWriteBytesPerSec, homesteadi
11 hBonoqueuesizevariance, bonoi 71 hSwapSpaceUsed, homeri 131 hAvgReqQueueLength, huawei1i
12 hBonorejectedoverloadcount, bonoi 72 hSystemCpu, homeri 132 hAvgWaitTime, huawei1i
13 hBusyCpu, bonoi 73 hTotalNumberProcesses, homeri 133 hBusyCpu, huawei1i
14 hBytesReceivedPerSec, bonoi 74 hUserCpu, homeri 134 hBytesReceivedPerSec, huawei1i
15 hBytesSendPerSec, bonoi 75 hWriteBytesPerSec, homeri 135 hBytesSendPerSec, huawei1i
16 hCxtSwitchesPerSec, bonoi 76 hAvgReqQueueLength, homesteadi 136 hCxtSwitchesPerSec, huawei1i
17 hMemavailreal, bonoi 77 hAvgWaitTime, homesteadi 137 hMemoryCached, huawei1i
18 hMembu↵er, bonoi 78 hBusyCpu, homesteadi 138 hMemoryInBu↵ers, huawei1i
19 hMemcached, bonoi 79 hBytesReceivedPerSec, homesteadi 139 hMemoryUsed, huawei1i
20 hMemoryCached, bonoi 80 hBytesSendPerSec, homesteadi 140 hPagesFaultsPerSec, huawei1i
21 hMemoryInBu↵ers, bonoi 81 hCxtSwitchesPerSec, homesteadi 141 hPktsReceived5sPython, huawei1i
22 hMemoryUsed, bonoi 82 hHomesteadcachelatencyaverage, homesteadi 142 hPktsSent5sPython, huawei1i
23 hMemtotalfree, bonoi 83 hHomesteadcachelatencycount, homesteadi 143 hSocketsInUse, huawei1i
24 hPktsReceived5sPython, bonoi 84 hHomesteadcachelatencyhwm, homesteadi 144 hSwapSpaceUsed, huawei1i
25 hPktsSent5sPython, bonoi 85 hHomesteadcachelatencylwm, homesteadi 145 hSystemCpu, huawei1i
26 hSocketsInUse, bonoi 86 hHomesteadcachelatencyvariance, homesteadi 146 hTotalNumberProcesses, huawei1i
27 hSscpuidle, bonoi 87 hHomesteadincomingrequestscount, homesteadi 147 hUserCpu, huawei1i
28 hSscpurawidle, bonoi 88 hHomesteadlatencyaverage, homesteadi 148 hWaitIoCpu, huawei1i
29 hSscpurawkernel, bonoi 89 hHomesteadlatencycount, homesteadi 149 hWriteBytesPerSec, huawei1i
30 hSscpurawsoftirq, bonoi 90 hHomesteadlatencyhwm, homesteadi 150 hBusyCpu, huawei2i
31 hSscpurawsystem, bonoi 91 hHomesteadlatencylwm, homesteadi 151 hBytesReceivedPerSec, huawei2i
32 hSscpurawuser, bonoi 92 hHomesteadlatencyvariance, homesteadi 152 hBytesSendPerSec, huawei2i
33 hSscpurawwait, bonoi 93 hMemavailreal, homesteadi 153 hCxtSwitchesPerSec, huawei2i
34 hSscpusystem, bonoi 94 hMemavailswap, homesteadi 154 hMemoryCached, huawei2i
35 hSscpuuser, bonoi 95 hMembu↵er, homesteadi 155 hMemoryInBu↵ers, huawei2i
36 hSsiorawreceived, bonoi 96 hMemcached, homesteadi 156 hMemoryUsed, huawei2i
37 hSsiorawsent, bonoi 97 hMemoryCached, homesteadi 157 hPagesFaultsPerSec, huawei2i
38 hSsiosent, bonoi 98 hMemoryInBu↵ers, homesteadi 158 hPktsReceived5sPython, huawei2i
39 hSsrawcontexts, bonoi 99 hMemoryUsed, homesteadi 159 hPktsSent5sPython, huawei2i
40 hSsrawinterrupts, bonoi 100 hMemtotalfree, homesteadi 160 hSystemCpu, huawei2i
41 hSssyscontext, bonoi 101 hPagesFaultsPerSec, homesteadi 161 hUserCpu, huawei2i
42 hSssysinterrupts, bonoi 102 hPktsReceived5sPython, homesteadi 162 hWriteBytesPerSec, huawei2i
43 hSystemCpu, bonoi 103 hPktsSent5sPython, homesteadi 163 hAvgReqQueueLength, huawei3i
44 hTotalNumberProcesses, bonoi 104 hReadBytesPerSec, homesteadi 164 hAvgWaitTime, huawei3i
45 hUserCpu, bonoi 105 hSocketsInUse, homesteadi 165 hBusyCpu, huawei3i
46 hWriteBytesPerSec, bonoi 106 hSscpuidle, homesteadi 166 hBytesReceivedPerSec, huawei3i
47 hBusyCpu, ellisi 107 hSscpurawidle, homesteadi 167 hBytesSendPerSec, huawei3i
48 hBytesReceivedPerSec, ellisi 108 hSscpurawkernel, homesteadi 168 hCxtSwitchesPerSec, huawei3i
49 hBytesSendPerSec, ellisi 109 hSscpurawnice, homesteadi 169 hMemoryCached, huawei3i
50 hCxtSwitchesPerSec, ellisi 110 hSscpurawsoftirq, homesteadi 170 hMemoryInBu↵ers, huawei3i
51 hMemoryCached, ellisi 111 hSscpurawsystem, homesteadi 171 hMemoryUsed, huawei3i
52 hMemoryInBu↵ers, ellisi 112 hSscpurawuser, homesteadi 172 hPagesFaultsPerSec, huawei3i
53 hMemoryUsed, ellisi 113 hSscpurawwait, homesteadi 173 hPktsReceived5sPython, huawei3i
54 hPktsReceived5sPython, ellisi 114 hSscpusystem, homesteadi 174 hPktsSent5sPython, huawei3i
55 hPktsSent5sPython, ellisi 115 hSscpuuser, homesteadi 175 hSystemCpu, huawei3i
56 hSystemCpu, ellisi 116 hSsiorawreceived, homesteadi 176 hTotalNumberProcesses, huawei3i
57 hUserCpu, ellisi 117 hSsiorawsent, homesteadi 177 hUserCpu, huawei3i
58 hAvgReqQueueLength, homeri 118 hSsioreceive, homesteadi 178 hWaitIoCpu, huawei3i
59 hAvgWaitTime, homeri 119 hSsiosent, homesteadi 179 hWriteBytesPerSec, huawei3i
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Fault Localization

t1 t2 t3 t4

Causality graph + anomalous KPIs = Evolution of Causality graph

Vertices:  KPIs
Colored vertices: anomalous KPIs

time
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Scores assigned to vertices in the evolution causality graph

PageRank

Ranking Algorithm

Root cause                most important node in anomalous subgraph

Fault Localization



Packet loss injected in sprout
Failure alerts + vertex scores

t1 t2 = 10’ t3 = 30’ t4 = 2 h

Normal Alert FailureNormal

homestead_Sscpurawnice   
sprout_Sprouthomerlatencyhwm
homestead_SocketsInUse
homestead_Sscpuidle
homestead_Sscpurawsystem
…

bono_Sssysinterrupts
huawei2_PktsReceived5sPython
sprout_Sscpurawnice
sprout_Sproutqueuesizevariance
sprout_Sprouthomerlatencyhwm
…

bono_Ssiosent
huawei6_TotalNumberProcesses
huawei7_PktsReceived5sPython
sprout_SystemCpu
sprout_BusyCpu
…

Sprout
Fault Localization



Case Study

8 Physical Machines

6 Virtual Machines

IMS 162 KPIs 

121 KPIs 

350 KPIs 

- Fault types: Packet loss, Packet Latency, Packet Corruption 
- Workload pattern: low traffic during week end and two peaks for day 
- # of Normal Samples: 100  
- # of Faulty Samples: 172



Precision Recall

98.2% 100%

Can we accurately predict failures?

All predicted failures
Correctly predicted failuresPrecision = 

All actual failures
Correctly predicted failuresRecall = 

- Fault types: Packet loss, Packet Latency, Packet Corruption 
- Workload pattern: low traffic during week end and two peaks for day 
- # of Normal Samples: 100  
- # of Faulty Samples: 172



Precision Recall

97% 100%

Can we accurately localize faults?

All predicted failures
Correctly localized faultsPrecision = 

All actual failures
Correctly localized faultsRecall = 

- Fault types: Packet loss, Packet Latency, Packet Corruption 
- Workload pattern: low traffic during week end and two peaks for day 
- # of Normal Samples: 100  
- # of Faulty Samples: 172
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New anomaly detector based on neural network

Online Prediction
(failure alert)

Cloud System

Fault Localization
(Fault location)

(Sssysinterrupts, bono) 
(PktsReceived5sPython, huawei2)
(Sscpurawnice, sprout)
(Sproutqueuesizevariance, sprout)
(Sprouthomerlatencyhwm, sprout)
…

Ranking of Anomalies

Anomalies

SVM on failure-free data

wi

(metric, resource)

Neural 
Network


