
Automatic Synthesis of
Adaptable and Evolving
Choreographies

GAUSS Kickoff Meeting
22-23 Feb. 2017 – MILANO BICOCCA

Marco Autili
Massimo Tivoli
Paola Inverardi
University of L’Aquila Governing Adaptive and

Unplanned Systems of Systems

Where do we come from?

Automated Synthesis of Dynamic
and Secured Choreographies

for the Future Internet
(H2020 project)	

(FP7 project)	

(H2020 project)	

Application context
We are in the Future Internet (FI) era

distributed computing environment

large number of available
software systems that

can be composed to
meet user needs

The ability to seamlessly compose and coordinate

heterogeneous systems is of paramount importance

* European Commission. Digital Agenda for
Europe - Future Internet Research and
Experimentation (FIRE) initiative, 2015

Composition approaches

Orchestration (centralized) Choreography (fully distributed)

Local centralized view
from the perspective of
one participant

Global decentralized view from a
multi-participant perspective (albeit

without a central controller)

OUR GOAL: automatic architecture synthesis (from

specification models to actual code) to support the

realization of choreographies by reusing-existing services

Motivations
Building applications by reusing services

 (often black-box)

Composing services in a distributed way

Support for automation is needed
(time-to-market, correctness by construction, etc.)

Aiding software producers to realize, deploy,
execute, and monitor choreography-based

systems by reusing existing services

Development scenario

Choreography modelers cooperate each
other to set business goals, e.g.,

- assisting travelers from arrival, to
staying, to departure

Development scenario

Reserve
Taxi Find POI

Reserve
Table

Check
Flight

… ...

… ...

… ...

Identify tasks and participants required to
achieve the goal, e.g.,

-  reserving a taxi from the local taxi
company,

-  purchasing digital tickets at the
train station,

-  performing transactions through
services based on near field
communication in a shop

Development scenario

Reserve
Taxi Find POI

Reserve
Table

Check
Flight

… ...

… ...

… ...

Specify how participants must
collaborate as admissible flows
of the identified business tasks
through:

-  BPMN2 Choreography
Diagrams

Model

The inventory contains services published
by providers, e.g.,

-  transportation companies

-  airport retailers

Development scenario

Reserve
Taxi Find POI

Reserve
Table

Check
Flight

… ...

… ...

… ...

Model

•  Out of the specified business goal, and

•  by (re-)using the set of services available
in the registry ...

Reserve
Taxi Find POI

Reserve
Table

Check
Flight

… ...

… ...

… ...

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 53

Step 1. Software producers cooperate
with domain experts and business
managers to

• set the business goal (for exam-
ple, assist travellers from arrival,
to staying, to departure),

• identify the tasks and partici-
pants required to achieve the
goal (for example, reserving a
taxi from the local taxi com-
pany, purchasing digital tickets
at the train station, and per-
forming transactions through
services based on near-fi eld com-
munication in a shop), and

• specify how participants must
collaborate through a BPMN2
choreography diagram.

To support this step, CHOReOS pro-
vides a plug-in that allows importing
the goal specifi cation into the Magic-
Draw modeling tool (www.nomagic.
com) and associates it with BPMN2

constructs and quality-of-service
constraints. In particular, CHOReOS
uses both the Q4BPMN notation—
an extension to BPMN2—to specify
nonfunctional properties and dedi-
cated automated tools to assess the
choreography specifi cation’s quality.

Step 2. MagicDraw exports the mod-
eled choreography to CHOReOSynt.
CHOReOSynt supports the XML-
based encoding of BPMN2 chore-
ographies, such as the one of the
BPMN2 Modeler.

Step 3. CHOReOSynt queries the reg-
istry to discover services suitable for
playing the choreography’s roles. The
registry contains services published
by providers (for example, trans-
portation companies and airport re-
tailers) that have identifi ed business
opportunities in the domain of in-
terest. To describe service interfaces,
CHOReOSynt uses WSDL (Web

Services Description Language; www.
w3.org/TR/wsdl). To describe service
interaction behavior, BPEL (Business
Process Execution Language) speci-
fi es the fl ow of messages exchanged
with the environment. The registry
also contains the registration of users
interested in exploiting the choreog-
raphy through their mobile apps.

Step 4. Starting from the choreogra-
phy diagram and the set of discov-
ered services, CHOReOSynt syn-
thesizes a set of CDs. The synthesis
exploits model transformations. The
transformations are implemented
through ATL (www.eclipse.org/atl),
a domain-specifi c language for real-
izing model-to-model (M2M) trans-
formations. ATL transformations
comprise a number of rules, each of
which manages a specifi c BPMN2
modeling construct. The current
implementation of these transforma-
tions in CHOReOSynt (available at

Design time Synthesis time

3

Business
manager

Software
engineer

End users

CHOReOSynt

Coordination
delegates

Enactment
engine

Service providers

Domain
expert

Choreography
diagram

Model refinem
ent

Model transform
ation

2

1

Execution time

4

1 5

1 6

Running choreography

Cloud
middleware

Publish

Register

Standard communication (I/O messages)
Additional communication (coordination information)

Registry

Services and things

1 5

FIGURE 2. An overview of automatic choreography synthesis, using a scenario involving the coordination of business services,
thing-based services, and stakeholders from air transportation, customer relationship management, and intelligent transportation.
WSDL stands for Web Services Description Language; BPEL stands for Business Process Execution Language.

s1aut.indd 53 12/9/14 3:02 PM

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 53

Step 1. Software producers cooperate
with domain experts and business
managers to

• set the business goal (for exam-
ple, assist travellers from arrival,
to staying, to departure),

• identify the tasks and partici-
pants required to achieve the
goal (for example, reserving a
taxi from the local taxi com-
pany, purchasing digital tickets
at the train station, and per-
forming transactions through
services based on near-fi eld com-
munication in a shop), and

• specify how participants must
collaborate through a BPMN2
choreography diagram.

To support this step, CHOReOS pro-
vides a plug-in that allows importing
the goal specifi cation into the Magic-
Draw modeling tool (www.nomagic.
com) and associates it with BPMN2

constructs and quality-of-service
constraints. In particular, CHOReOS
uses both the Q4BPMN notation—
an extension to BPMN2—to specify
nonfunctional properties and dedi-
cated automated tools to assess the
choreography specifi cation’s quality.

Step 2. MagicDraw exports the mod-
eled choreography to CHOReOSynt.
CHOReOSynt supports the XML-
based encoding of BPMN2 chore-
ographies, such as the one of the
BPMN2 Modeler.

Step 3. CHOReOSynt queries the reg-
istry to discover services suitable for
playing the choreography’s roles. The
registry contains services published
by providers (for example, trans-
portation companies and airport re-
tailers) that have identifi ed business
opportunities in the domain of in-
terest. To describe service interfaces,
CHOReOSynt uses WSDL (Web

Services Description Language; www.
w3.org/TR/wsdl). To describe service
interaction behavior, BPEL (Business
Process Execution Language) speci-
fi es the fl ow of messages exchanged
with the environment. The registry
also contains the registration of users
interested in exploiting the choreog-
raphy through their mobile apps.

Step 4. Starting from the choreogra-
phy diagram and the set of discov-
ered services, CHOReOSynt syn-
thesizes a set of CDs. The synthesis
exploits model transformations. The
transformations are implemented
through ATL (www.eclipse.org/atl),
a domain-specifi c language for real-
izing model-to-model (M2M) trans-
formations. ATL transformations
comprise a number of rules, each of
which manages a specifi c BPMN2
modeling construct. The current
implementation of these transforma-
tions in CHOReOSynt (available at

Design time Synthesis time

3

Business
manager

Software
engineer

End users

CHOReOSynt

Coordination
delegates

Enactment
engine

Service providers

Domain
expert

Choreography
diagram

Model refinem
ent

Model transform
ation

2

1

Execution time

4

1 5

1 6

Running choreography

Cloud
middleware

Publish

Register

Standard communication (I/O messages)
Additional communication (coordination information)

Registry

Services and things

1 5

FIGURE 2. An overview of automatic choreography synthesis, using a scenario involving the coordination of business services,
thing-based services, and stakeholders from air transportation, customer relationship management, and intelligent transportation.
WSDL stands for Web Services Description Language; BPEL stands for Business Process Execution Language.

s1aut.indd 53 12/9/14 3:02 PM

Synthesis
Processor

JANUARY/FEBRUARY 2015 | IEEE SOFTWARE 53

Step 1. Software producers cooperate
with domain experts and business
managers to

• set the business goal (for exam-
ple, assist travellers from arrival,
to staying, to departure),

• identify the tasks and partici-
pants required to achieve the
goal (for example, reserving a
taxi from the local taxi com-
pany, purchasing digital tickets
at the train station, and per-
forming transactions through
services based on near-fi eld com-
munication in a shop), and

• specify how participants must
collaborate through a BPMN2
choreography diagram.

To support this step, CHOReOS pro-
vides a plug-in that allows importing
the goal specifi cation into the Magic-
Draw modeling tool (www.nomagic.
com) and associates it with BPMN2

constructs and quality-of-service
constraints. In particular, CHOReOS
uses both the Q4BPMN notation—
an extension to BPMN2—to specify
nonfunctional properties and dedi-
cated automated tools to assess the
choreography specifi cation’s quality.

Step 2. MagicDraw exports the mod-
eled choreography to CHOReOSynt.
CHOReOSynt supports the XML-
based encoding of BPMN2 chore-
ographies, such as the one of the
BPMN2 Modeler.

Step 3. CHOReOSynt queries the reg-
istry to discover services suitable for
playing the choreography’s roles. The
registry contains services published
by providers (for example, trans-
portation companies and airport re-
tailers) that have identifi ed business
opportunities in the domain of in-
terest. To describe service interfaces,
CHOReOSynt uses WSDL (Web

Services Description Language; www.
w3.org/TR/wsdl). To describe service
interaction behavior, BPEL (Business
Process Execution Language) speci-
fi es the fl ow of messages exchanged
with the environment. The registry
also contains the registration of users
interested in exploiting the choreog-
raphy through their mobile apps.

Step 4. Starting from the choreogra-
phy diagram and the set of discov-
ered services, CHOReOSynt syn-
thesizes a set of CDs. The synthesis
exploits model transformations. The
transformations are implemented
through ATL (www.eclipse.org/atl),
a domain-specifi c language for real-
izing model-to-model (M2M) trans-
formations. ATL transformations
comprise a number of rules, each of
which manages a specifi c BPMN2
modeling construct. The current
implementation of these transforma-
tions in CHOReOSynt (available at

Design time Synthesis time

3

Business
manager

Software
engineer

End users

CHOReOSynt

Coordination
delegates

Enactment
engine

Service providers

Domain
expert

Choreography
diagram

Model refinem
ent

Model transform
ation

2

1

Execution time

4

1 5

1 6

Running choreography

Cloud
middleware

Publish

Register

Standard communication (I/O messages)
Additional communication (coordination information)

Registry

Services and things

1 5

FIGURE 2. An overview of automatic choreography synthesis, using a scenario involving the coordination of business services,
thing-based services, and stakeholders from air transportation, customer relationship management, and intelligent transportation.
WSDL stands for Web Services Description Language; BPEL stands for Business Process Execution Language.

s1aut.indd 53 12/9/14 3:02 PM

Choreography
developer

Model

...
the Synthesis Processor

automatically produces (if
possible) a choreography-

based application
achieving the specified

goal

Synthesis phase Modelling phase

Main ingredients of our method

Distributed Protocol Adaptation Layer

Distributed Business Logic Layer

Goal specification

S1
S2

S4
S3

Existing services selected as
good candidates to realize the
required business logic

Distributed Protocol Coordination Layer

Goal specification

S1
S2

S4
S3

Existing services selected as
good candidates to realize the
required business logic

GAP

interfaces
exposed by

concrete services
VS

abstract roles
modeled by the
choreography
specification

Choreography coordination
Problem

Automatic enforcement of choreography realizability
•  How to externally coordinate the interaction of existing services so to

fulfill the global collaboration prescribed by the choreography
specification?

Assumption
BPMN2 Choreography Diagrams
•  A choreography-based specification of the system to be realized

Our solution
Automated synthesis of Coordination Delegates (CDs)
•  Automatically produce the code of additional software entities that

proxify and coordinate the services’ interaction so to guarantee the
specified global collaboration

Focus
Automatically realizing a choreography by reusing and suitably
coordinating third-party services

CD
2

CD
4

CD
3

CD
1

Enforcing choreography realizability

S4:
R4

S3:
R3

S1:
R1

S2:
R2

May
I?

May
I? Yes Yes

Yes No
No

No

Yes No

m1 m2
Standard

Communication
(I/O Messages)

Additional Communication
(Coordination Information)

CDi
Coordination Delegate

(Service Proxy)

Choreography adaptation
Problem

Enforcement of service-role bindings
•  How to externally adapt the interaction of existing services so to

“match” the specification of the choreography roles to be played?

Assumption
LTS-based or BPEL+WSDL-based specification
•  A specification of the externally observable behavior of both

services and roles in terms of types and sequences of message
exchanges

Our solution
(Partially) automated synthesis of Adapters
•  Produce adapters that mediate the interaction Service ßà CD

Focus
Realizing correct service-role binding by solving
interoperability issues

CD
2

CD
4

CD
3

CD
1

Enforcing service-role bindings

S4:
R4

S3:
R3

S1:
R1

S2:
R2

May
I?

May
I? Yes Yes

Yes No
No

No

Yes No

m1 m2
Standard

Communication
(I/O Messages)

Additional Communication
(Coordination Information)

CDi
Coordination Delegate

(Service Proxy)

A
Adapter

A

Adopted architectural style

S1	 S2	

S3	

CD1.2	 A2	 A1	
Standard	 	
Communica4on	 (e.g.,	
request/response	
messages)	

Addi4onal	 	
Communica4on	
(coordina4on	 	
informa4on	
for	 coordina4on	 	
purposes)	

CD	 Protocol	 Coordina-on	 Layer	
(CDs)	

A	 Protocol	 Adapta-on	 Layer	
(Adapters)	

S	 Business	 Logic	 Layer	
(Services)	

S4	

CD1.3	 CD2.3	

A3	 CD2.1	

CD3.1	 CD4.1	 A4	

A5	

Focusing on adapters generation

•  We exploit Enterprise Integration Patterns (EIP)

The generated adaptation logic is realized as a
composition of Message Routing patterns that realize
I/O data mappings

e.g., adapters are able to
•  map message data types
•  reorder/merge/split the sequence of operation calls

and/or related I/O messages

Considered EIP: Message Routing patterns

Choreography evolution
Problem

Choreography evolution
•  How to enable choreography evolution in response to goal and

context changes?

Assumption
Specification of variation points in terms of Call
Choreographies
•  Each variation point specifies behavioral alternatives in term of

(set of) sub-choreographies

Our solution
Automated synthesis of autonomic CDs (aCDs)
•  Automatically produce the code of CDs that are now are external

controllers realizing multiple interacting feedback loops

Focus
Enabling (a form of) choreography evolution to face well-
confined goals and context changes

Choreography evolution
Variation point

behavioral alternative 1
in context x

behavioral alternative 2
in context y

behavioral alternative 3
in context y and context z

Adopted architectural style

S1	 S2	

S3	

CD1.2	 A2	 A1	
Standard	 	
Communica4on	 (e.g.,	
request/response	
messages)	

Addi4onal	 	
Communica4on	
(coordina4on	 	
informa4on	
for	 coordina4on	 	
purposes)	

CD	 Protocol	 Coordina-on	 Layer	
(CDs)	

A	 Protocol	 Adapta-on	 Layer	
(Adapters)	

S	 Business	 Logic	 Layer	
(Services)	

S4	

CD1.3	 CD2.3	

A3	 CD2.1	

CD3.1	 CD4.1	 A4	

A5	

Conclusions
Put the bases to support dynamic choreography evolution in
response of goal and context changes

•  Separation of concerns between application, coordination, and
adaptation logic

•  Adapters as a composition of different EIP depending on a
notion of I/O data mappings inference

 (Message Filter, Aggregator, Splitter, and Resequencer)

Relevance of exploiting EIP
•  Modular adapters
•  Dynamic evolution
•  Automatic generation and easier maintenance of adapters’ code

Future research directions
à GAUSS needs
ü Extension of the approach to deal with governance issues

•  Multiple systems belonging to different security domains/federations
governed by different authorities

•  Usage of different identity attributes that are utilized in their access
control polices

ü How to support dynamic evolution via the automated and on-the-fly
synthesis of, e.g., more complex adapters realized by combining
additional classes of EIP, e.g.,

•  Message Transformation Patterns such as Content Enricher, Content
Filter, and Transformer

•  Semantic interoperability
•  Enabling a finer form of adaptation concerning mismatches at the level

of the semantics of the exchanged messages

THANK YOU

