
Model based test
generation for web apps

Paolo Tonella
Fondazione Bruno Kessler, Trento, Italy

tonella@fbk.eu

mailto:tonella@fbk.eu

Outline

2

• Model based testing of web apps
• Inferred models and N-grams

• Paolo Tonella, Roberto Tiella, Cu Duy Nguyen, Interpolated n-grams for model
based testing. ICSE, pp. 562-572, 2014

• Page Object and search based test generation
• Work in progress with Matteo Biagiola and Filippo Ricca

Model based testing

3

S9

S3

S4

S11

S17

notes

newNote

text
subject

submit

ok

logoff edit

• Behaviour is abstracted as
states/transitions

• Test cases are paths satisfying
(state/transition) coverage

TC1: <newNote, submit, ok, logoff>
TC2: <notes, edit, text, subject, submit>

Model inference

Web crawler

S9

S3

S4

S11

S17

notes

newNote

text
subject

submit

ok

logoff edit

Web pages

State
abstraction

State
abstraction

Where do we get the model from?

Path infeasibility

5

S9

S3

S4

S11

S17

notes

newNote

text
subject

submit

ok

logoff edit
Mandatory
fields for
new notes

TC1: <newNote, submit, ok, logoff>
TC2: <notes, edit, text, subject, submit>

N-grams for path feasibility

6

S9

S3

S4

S11

S17

notes

newNote

text
subject

submit

ok

logoff edit
Mandatory
fields for
new notes

TC1: <newNote, subject, text, submit, ok, logoff>
TC2: <notes, edit, text, subject, submit>

6

P(submit | newNote) = 0
P(subject | newNote) = 0.8
P(text | newNote) = 0.2

P(text | subject) = 0.9
P(subject | subject) = 0.07
P(submit | subject) = 0.03

P(eN |	e1,	…,	eN-1)

N-gram statistics
computed from
monitored data
(execution logs)

Interpolated N-grams

7

P*(e | e1,...,eN−1) =α 2k P(e | e1,...,ek)
k=1

N−1

∑

• Long N-tuples are used and given high weight, when available
• Short N-tuples are resorted to when longer N-tuples are unavailable

Problem: with longer context N, feasibility is more likely, but for
a given prefix, no N-tuple might be available if N is too long

Open issues

8

• Model inference:
• State abstraction function is heuristic and may be imprecise
• Crawling may be incomplete

• Test case generation:
• Input data generation is not considered
• Computation of N-gram statistics may require substantial monitoring
• Feasibility may involve both path selection and input data

generation

Page Objects

9

Web
Page

Test
Automation

Tool

Test
Cases

Bug
Report

Web
Page

Page
Object

Test
Automation

Tool

Test
Cases

Bug
Report

HTML pages

Title: White
Artist: Red
Ranking: 1

Title: Blue
Artist: Grey
Ranking: 7

Page Objects

class AlbumPage {
 getRanking()

a = selectAlbum(“Blue”);
assert(a.getRanking() == 7);

class AlbumListPage {
 selectAlbum(String title)

x = findElement(By.XPath(
“//li[2]//[text()=
‘Ranking’]”));

assert(x == “7”);

An abstraction that exposes a model of a web
page to test cases.

Approach

10

PAGE OBJECTS

modeling parsing

WEB APPLICATION NAVIGATION GRAPH

state/transition
coveragePATH GENERATORSEARCH BASED TEST CASE GENERATOR

from path to Java class

feasible
+

likely infeasible paths

SEARCH BASED PATH GENERATOR

new paths

Path and test case generators

11

While not model
coverage

Select best
individuals

Mutate

individuals

Candidate paths

Fitness: distance from

uncovered states/transitions Mutation: cut, 1-step, extension

NAVIGATION

GRAPH

Initial

paths

While paths
needed

While not coverage
or timeout

EvoSuite

(Likely) infeasible paths

Path generator

12

MUTATION OPERATORS1. Cut: <P1, P2, P3>

2. 1-step: <P1, P2> P2

3. Extension: e = rand(X) <P1, P2, P5>

P3

P5

<P1, P2, P5>

<P1, P2>
p < 1

p < 1

p = 1
<P1, P2, P5, P6, P8>

e

∉
set of likely

unfeasible

paths

P6 P2

P5

P8

P1

P7

P3

e

random walk

START

END

0.5

0.5

1.0

0.5

0.5
0

given P and outgoing edges (N):

edge weight = 1/N

Path feasibility

<p1,p2,p3,…>

<m1,m2,…>

…
LIST OF PATH ELEMENTS

PATH ELEMENT

LIST OF NODES (PAGE OBJECTS)
SIZE = N

LIST OF EDGES (NAVIGATION METHODS)
SIZE = M = N - 1

public class TestClassP1 {
 public void f(T1 x1, T2 x2,…, Tr xr)
 {

Driver d = new Driver();
 P1 p1 = new P1();
 if(!pre1(d,x1,x2)) return;

P2 p2 = p1.m(x1,x2)
if(!pre2(d,x3,x7)) return;
P3 p3 = p2.m(x3,x7);
…

 return; //target
 }
}

path element

• Path feasibility reduced to statement
coverage:

• all preconditions satisfied
• last statement covered

PRECONDITIONS:
PARAMETERS (xi) + STATE (d)

Relevance for GAUSS

14

• Models similar to Page Objects may be available in
GAUSS

• Upon adaptation/evolution, models may include
previously untested or scarcely tested behaviours

• Path generation and path feasibility is key for
automated testing of new behaviours

• Availability of automated oracle is another key
prerequisite

