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Outline
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• Model based testing of web apps 
• Inferred models and N-grams 

• Paolo Tonella, Roberto Tiella, Cu Duy Nguyen, Interpolated n-grams for model 
based testing. ICSE, pp. 562-572, 2014 

• Page Object and search based test generation 
• Work in progress with Matteo Biagiola and Filippo Ricca



Model based testing
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• Behaviour is abstracted as 
states/transitions 

• Test cases are paths satisfying 
(state/transition) coverage

TC1: <newNote, submit, ok, logoff> 
TC2: <notes, edit, text, subject, submit>



Model inference

Web crawler
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Where do we get the model from?



Path infeasibility
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TC1: <newNote, submit, ok, logoff> 
TC2: <notes, edit, text, subject, submit>



N-grams for path feasibility
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TC1: <newNote, subject, text, submit, ok, logoff> 
TC2: <notes, edit, text, subject, submit>
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P(submit | newNote) = 0 
P(subject | newNote) = 0.8 
P(text | newNote) = 0.2

P(text | subject) = 0.9 
P(subject | subject) = 0.07 
P(submit | subject) = 0.03

P(eN |	e1,	…,	eN-1)

N-gram statistics 
computed from 
monitored data 
(execution logs)



Interpolated N-grams
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P*(e | e1,...,eN−1) =α 2k P(e | e1,...,ek )
k=1

N−1

∑

•  Long N-tuples are used and given high weight, when available 
•  Short N-tuples are resorted to when longer N-tuples are unavailable

Problem: with longer context N, feasibility is more likely, but for 
a given prefix, no N-tuple might be available if N is too long



Open issues
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•  Model inference:  
•  State abstraction function is heuristic and may be imprecise 
•  Crawling may be incomplete 

•  Test case generation: 
•  Input data generation is not considered 
•  Computation of N-gram statistics may require substantial monitoring 
•  Feasibility may involve both path selection and input data 

generation



Page Objects
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HTML pages

Title: White 
Artist: Red 
Ranking: 1

Title: Blue 
Artist: Grey 
Ranking: 7

Page Objects

class AlbumPage { 
  getRanking()

a = selectAlbum(“Blue”); 
assert(a.getRanking() == 7);

class AlbumListPage { 
  selectAlbum(String title)

x = findElement(By.XPath( 
“//li[2]//[text()= 
‘Ranking’]”)); 

assert(x == “7”);

An abstraction that exposes a model of a web 
page to test cases.



Approach
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PAGE OBJECTS

modeling parsing

WEB APPLICATION NAVIGATION GRAPH

state/transition 
coveragePATH GENERATORSEARCH BASED TEST CASE GENERATOR

from path to Java class

feasible  
+ 

likely infeasible paths

SEARCH BASED PATH GENERATOR

new paths



Path and test case generators
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(Likely) infeasible paths



Path generator
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MUTATION OPERATORS1. Cut: <P1, P2, P3>


2. 1-step: <P1, P2>  P2


3. Extension: e = rand(X) <P1, P2, P5>
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given P and outgoing edges (N):

edge weight = 1/N



Path feasibility

<p1,p2,p3,…>

<m1,m2,…>

…
LIST OF PATH ELEMENTS

PATH ELEMENT

LIST OF NODES (PAGE OBJECTS) 
SIZE = N

LIST OF EDGES (NAVIGATION METHODS) 
SIZE = M = N - 1

public class TestClassP1 { 
 public void f(T1 x1, T2 x2,…, Tr xr) 
 { 

Driver d = new Driver(); 
  P1 p1 = new P1(); 
  if(!pre1(d,x1,x2)) return; 

P2 p2 = p1.m(x1,x2) 
if(!pre2(d,x3,x7)) return; 
P3 p3 =  p2.m(x3,x7); 
… 

  return; //target 
 } 
}

path element

• Path feasibility reduced to statement 
coverage: 

• all preconditions satisfied 
• last statement covered

PRECONDITIONS:  
PARAMETERS (xi) + STATE (d)



Relevance for GAUSS
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• Models similar to Page Objects may be available in 
GAUSS 

• Upon adaptation/evolution, models may include 
previously untested or scarcely tested behaviours 

• Path generation and path feasibility is key for 
automated testing of new behaviours 

• Availability of automated oracle is another key 
prerequisite


